
J Math Chem (2012) 50:805–818
DOI 10.1007/s10910-011-9925-1

ORIGINAL PAPER

The analytical determination of kinetic parameters
for a bimolecular EC mechanism
from chronoamperometric data

K. T. Gimre · R. V. Whiteley Jr. · C. M. Guenther

Received: 22 July 2011 / Accepted: 30 September 2011 / Published online: 15 October 2011
© Springer Science+Business Media, LLC 2011

Abstract We study the dependence of chronoamperometric data on the kinetic
parameters for a bimolecular reaction, characterizing the behavior of an electrochem-
ical mechanism that pertains to lithium/sulfur dioxide batteries. The reaction entails
first the reduction of a reactant O to a product R by an instantaneous charge transfer,
followed by a homogeneous chemical reaction between O and R to produce an electro-
chemically inert product P. We model this by a semilinear reaction-diffusion system
with discontinuous initial conditions and mixed Dirichlet and Neumann boundary
conditions, and develop a procedure to extract from a single potential step experiment
the forward and reverse rate constants for the reaction. To do so we define a function
J (t) := j (t)

√
t , where j (t) is the current density from the chronoamperometric out-

put, and use maximum principle and scaling arguments to exploit the location of the
minimum of J (t) versus t .
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1 Introduction

The use of potential step chronoamperometry and chronocoulometry for the charac-
terization of chemical reactions that follow an instantaneous charge transfer reaction
(the EC mechanism)

O + ne− � R (1)

has been described for several types of reactions (Reactions 2–5). There is the first
order decay of the reduction product, R, to produce an electrochemically inactive
product, P (Eq. 2) [1–3],

R → P (2)

and there are several follow-on reactions which lead to regeneration of O, the electro-
chemical reactant, which are either first [4,5] or second order [4] in R. (In Reaction
3, S is an electrochemically inactive reactant.)

R + S → O + P (3)

R + R → O + P (4)

Another such second order reaction, the dimerization of R has also been studied using
a double potential step method [6].

R + R → P (5)

The dimerization has particular relevance to the cathodic half-reaction of the Li/SO2
battery wherein the SO2 is reduced to the SO1−

2 free radical which then dimerizes to
the dithionite ion, S2O2−

4 [7]. But also relevant to the Li/SO2 battery is an alternative
follow-on reaction in which the SO1−

2 reduction product reacts with SO2 to form the
S2O1−

4 adduct [8,9]. In terms of Reactions 2–5, this can be expressed as

R + O
k f
�
kb

P. (6)

Note that we write this more generally than Reactions 2–5, allowing that this follow
on reaction can run forward at a rate k f or backwards at a rate kb.

Reaction 6 looks like a simple complement to Reaction 3, because here R consumes
rather than generates O. However, the theoretical treatment of Reaction 3 has been
for a heterogeneous reaction between R and S which is taken to be zero order in S,
resulting in a linear system of differential equations. Reaction 6, however, must be
modeled by a semilinear system, and so linear techniques such as the Laplace trans-
form method no longer apply, and even short term existence and uniqueness are not a
priori known. Further complications include mixed Dirichlet and Neumann boundary
conditions, discontinuous initial conditions, and an infinite spatial domain.
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Fig. 1 Chronoamperometric
response (expressed in current
density j (t)) for three kinetic
conditions with
Cb = 10−3 mol · cm−3 and
DO = DR = 2DP =
10−5 cm2 · s−1; k f is in

cm3 · mol−1 · s−1 and kb is in
s−1. Curve ‘a’ corresponds to
k f = kb = 0, ‘b’ to

k f = 106, kb = 0, and ‘c’ to

k f = 106, kb = 250

We take the reaction between R and O as a homogeneous, bimolecular reaction
which is first order in R and O with forward and reverse rate constants k f and kb,
respectively. The experiment is begun with Cb as the initial concentration of O. As
in all studies cited here, we take the potential step to cause an effectively instanta-
neous charge transfer and to be sufficiently large to drive the concentration of O at
the electrode surface to zero and create diffusion controlled mass transport of O to the
electrode and R from the electrode.

Our goal is to deduce the rate constants from a single potential step experiment
from chronoamperometric data, j (t), governed by

j (t) = nF DO
∂O

∂x

∣
∣
∣
∣
x=0

. (7)

Here n is the number of electrons transferred to O in the electrochemical reaction; F
is Faraday’s constant; DO is the diffusion coefficient of O; O is the concentration of
O; and ∂O

∂x is the concentration gradient of O, with x the distance from the electrode.
All concentrations are molar concentrations.

The problem is that most current density curves look essentially the same. For exam-
ple a family of plots of j (t) versus t is shown in Fig. 1. Here, j (t) is in amp · cm−2.

Without prior knowledge of the rate constants that produced the three curves in
Fig. 1, there is such small variation between the curves that it would be difficult to
differentiate between them. However, the rate constants that produced the curves are
significantly different: for one, ‘a’, both rate constants are zero, for the second, ‘b’,
k f = 106 and kb = 0, and for the third, ‘c’, k f = 106 and kb = 250.

There are, however, certain distinctions between the curves that we can exploit to
simplify calculations and accentuate differences. We introduce here a novel way of
presenting chronoamperometric data, j (t), that immediately differentiates between
the cases k f > 0 and k f = 0, and kb = 0 and kb > 0. We define a function

J (t) := j (t)
√

t,
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Fig. 2 Normalized
chronoamperometric response
(expressed as normalized current
density J (t) in
amp · s1/2 · cm−2) for the same
three kinetic parameters, Cb , and
diffusion coefficients of Fig. 1

and consider the plot J (t) versus t . Recall that a charge transfer that is not followed
by a chemical reaction must have k f = 0 and so j (t) is given by the Cottrell equation,

j (t) = nFCb

√

DO

π t
(8)

[11]. Therefore, J (t) will be manifest as the constant nFCb

√
DO
π

for all t . It is shown1

in Fig. 2 (and proven in Sect. 3) that because the consumption of incoming O by out-
going R will mitigate the supply of O to the electrode, J (t) must deviate more and
more negatively from the constant with increasing k f .

Moreover, it is shown in Fig. 2c and proven in Sect. 3 that when k f and kb are
positive there exists a minimum of J (t). In Sect. 4 we use scaling and maximum prin-
ciple arguments to determine

k f
kb

from the value of this minimum. From the coordinates
of the minimum, we then find kb. When k f > 0 but kb = 0, there is no such minimum
as shown in Fig. 2b, but k f can, nevertheless be calculated from the deviation of J (t)
from k f = 0 behavior. This also is described and illustrated in Sect. 4.

1.1 Outline

The outline of the paper is as follows: in Sect. 2 we model the reaction by an ini-
tial boundary value system of semilinear reaction diffusion equations, and discuss
physical implications. In Sect. 3 we define the function J (t) and use it to determine
mathematically how changing the values of the rate constants k f and kb affects the
chromoamperometric output. In Sect. 4, we present a procedure to extract the rate
constants for the reaction from the chronoamperometric output.

1 For convenience, Figs. 1 and 2 were created with Cb = 10−3 mol · cm−3 (i.e. 1 M). Experimentally,
it is necessary to restrict Cb to about 10−5 mol · cm−3 in order to preserve the requirement that diffu-
sion is the sole mode of mass transport. If Cb is sufficiently small (on the order of 10−5 mol · cm−3 or
lower, generally), then due to various numerical errors, the numerical solver pdepe used above gives results
that are too inaccurate to be useful; however, we can scale the given PDEs to a similar set of PDEs with
more manageable parameters. If desired, several such scalings (to a variety of different parameters) can be
performed; all should result in approximately the same value.
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2 Mathematical model

We model Reaction 1 followed by 6 by the following reaction-diffusion system on
(x, t) ∈ [0,∞)×[0, τ ], where τ is the duration of the potential step. The k f O R term
is a consequence of the reaction between O and R being first order in each, and the
term kb P is due to P decomposing by first order kinetics. Here, DO , DR, and DP are
diffusion coefficients, which in the k f > 0 case we will assume satisfy DO = DR .
This is a physically reasonable assumption since R is created by nothing more than
an electron transfer.

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂O

∂t
= DO

∂2 O

∂x2 − k f O R + kb P

∂ R

∂t
= DR

∂2 R

∂x2 − k f O R + kb P

∂ P

∂t
= DP

∂2 P

∂x2 + k f O R − kb P

(9)

with boundary conditions

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

O(0, t) = 0

R(0, t) = Cb

∂ P

∂x
(0, t) = 0

and

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

lim
x→∞ O(x, t) = Cb

lim
x→∞ R(x, t) = 0

lim
x→∞ P(x, t) = 0

(10)

and initial conditions
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(x, 0) =
{

0 x = 0

Cb x > 0

R(x, 0) =
{

Cb x = 0

0 x > 0

P(x, 0) = 0.

(11)

This is a system of semilinear reaction-diffusion equations on a half-line2 with a jump
discontinuity in the initial conditions and mixed Neumann and Dirichlet boundary

2 Throughout this paper, all figures are generated by MATLAB. In order to use it to generate these plots,
solutions must be defined on a bounded set. To handle this, we replace the infinite right boundary x = ∞
with a large enough finite boundary x = x̂ . To determine how large x̂ must be, we approximate a general
O(x, t) for any rate constants k f , kb with a simpler function, namely the solution O0,0(x, t) of Eqs. 9–
11 if k f = kb = 0. In that case, the solution of Eqs. 9–11 is O0,0(x, t) = Cberf x√

4DO t
.Then for any

fixed x, O0,0(x, t) decreases with t , since erf(z) increases with z. If we redefine the right boundary to be
at x = x̂ , then the boundary condition there (O(x̂, t) = Cb) will be at its least accurate for the largest
t . So if we want the boundary condition to be accurate to 0.01%, then we have to find the x̂ for which
O0,0(x̂, τ ) = 0.9999Cb , which gives x̂ = 5.502

√
DOτ .
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Fig. 3 Concentration profile of
reaction product P (mol · cm−3)
with x in cm. Cb =
10−5 mol · cm−3, k f =
107 cm3 · mol−1 · s−1 and
kb = 10 s−1. Here ‘a,’ ‘b,’ ‘c,’
‘d,’ and ‘e’ correspond to fixed
times of
t = 0.02, 0.04, 0.06, 0.08, 0.1,
all in s

Fig. 4 Concentration profile of the reaction product P (mol · cm−3) with DO = DR = 2DP =
10−5 cm2 · s−1 throughout. In a, Cb = 10−5 mol · cm−3 and in b, Cb = 10−4 mol · cm−3. In both
parts, ‘a’ corresponds to k f = 107, kb = 10, ‘b’ corresponds to k f = 2 × 107, kb = 10, and ‘c’

corresponds to k f = 107, kb = 100, all with k f expressed in cm3 · mol−1 · s−1 and kb in s−1

conditions. It can be proved that O, R, and P remain bounded in the case kb = 0, and
we assume the same result in the general case kb > 0; this is obvious physically due to
conservation of mass. Based on results for similar semilinear parabolic systems (e.g.
Theorem 2 on page 500 [10]), short term existence and uniqueness is then a reasonable
assumption.

This model predicts the expected physical behavior of O, R, and P. To illustrate
this, we consider the profile of P(x, t) and how it is affected by the rate constants. In
Fig. 3, P(x, t) is shown to reach a maximum near the electrode, but not at x = 0. This
is logical because the rate of production of P is given by k f O R and at x = 0, O = 0,
and as x → ∞, R → 0. Furthermore, P(0, t) for t > 0 is not zero because P can
diffuse back to the electrode surface from the “reaction zone” where the production of
P is substantial. Also Fig. 4 shows the predictable effects of Cb, k f and kb on P(x, t).
Looking, for example, at various times, P increases at the electrode with increasing Cb

and increasing k f but decreases with kb as it should given that O and R will increase
with Cb and that d P

dt = k f O R − kb P .
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3 Theoretical results

We now examine the effect that changing k f and kb has on the corresponding current
density, so that given a current density we can compare two guessed values of k f and
kb and determine which is more accurate. When k f = kb = 0, the solution of the
system can be found explicitly, as described in Sect. 3.1. For k f > 0, kb = 0 the key
results are in Sect. 3.2, and are the following:

1. Bound O and R using the solution of O − R, which we can find explicitly.
2. Using scaling arguments and the maximum principle, prove that our model implies

the expected physical behavior: as k f increases (resp. decreases), J decreases
(resp. increases).

Results for the case k f > 0, kb > 0 are similar to those in Sect. 3.2, and are found in
Sect. 3.3.

In what follows, we define J (t) := j (t)
√

t , and to a current density j1(t), j2(t),
or j(t), denote the corresponding J by J1, J2, and J . Similarly, let j1 be the cur-
rent density corresponding to a concentration O1(x, t), etc. We assume throughout
that unique solutions exist for Eqs. 9–11. This is an unnecessary assumption only in
Sect. 3.1 below, given that in that case we can construct explicit solutions that can be
proven to be unique by standard methods.

3.1 k f = kb = 0

Assume that k f = kb = 0. Then both the reaction terms k f OR and kb P terms are
dropped from Eq. 9, which yields the heat equation for each of O, R, and P . These can
be solved explicitly, and specifically, O(x, t) = Cberf(x/

√
4DOt). By direct evalua-

tion, this leads to the Cottrell equation, (8). Therefore J takes on a constant value for
all t . As will be seen in the next two sections, this is unique to the k f = kb = 0 case,
and consequently characterizes it: if an experimental J (t) versus t plot is produced
and is seen to be constant, we can deduce without any further calculations that both
rate constants are zero.

3.2 k f > 0, kb = 0

Now assume that k f > 0 and kb = 0, so that the partial differential equations are of
the form

⎧

⎪⎪⎨

⎪⎪⎩

∂O

∂t
= DO

∂2 O

∂x2 − k f OR

∂ R

∂t
= DO

∂2 R

∂x2 − k f OR,

(12)

the PDE in P being ignored since kb P = 0, to the effect that P(x, t) has no effect on
the values of O(x, t) and J (t). Recall that we are assuming DO = DR . The boundary
and initial conditions are again given by Eqs. 10 and 11.
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Lemma 1 is used in the proof of Lemma 2:

Lemma 1 If O and R solve (12), (10), (11), then 0 ≤ O(x, t) ≤ Cberf x√
4DO t

and

0 ≤ R(x, t) ≤ Cberfc x√
4DO t

.

Proof Define f := O − R(= 2Cberf x√
4DO t

− Cb) and rewrite the first PDE,

L[O] := DO
∂2 O

∂x2 − k f O(O − f ) − ∂O

∂t
= 0,

taking O as a solution of the PDE using the usual boundary and initial conditions.
Define u := Cberf x√

4D0t
. Then

L[u] ≤ L[O] ≤ L[0],

as can be checked by direct substitution , and 0 ≤ O ≤ u on the boundary of the
domain. By Theorem 12 in Section 3.7 in [12], 0 ≤ O ≤ u everywhere in the domain,
as long as L is parabolic with respect to both θ O and θ O + (1 − θ)u for 0 ≤ θ ≤ 1.

So we can take 0 ≤ O(x, t) ≤ Cberf x√
4DO t

. The same argument can be used on the
second PDE

L[R] := DO
∂2 R

∂x2 − k f ( f + R)R − ∂ R

∂t
= 0,

instead taking u := Cberfc x√
4DO t

to show that 0 ≤ R(x, t) ≤ Cberfc x√
4DO t

. ��
The following two lemmas describe how J is affected by changing k f : Lemma 2

says that increasing k f decreases J for all t , while decreasing k f increases J every-
where. Lemma 3 describes how changing k f scales J horizontally. Using these lem-
mas it can be shown that J decreases for all t .

Lemma 2 If O(x, t) = O1(x, t) and R(x, t) = R1(x, t) solve (12), (10), (11) for
k f = k f 1 > 0 and some bulk concentration Cb, and if O(x, t) = O2(x, t) and
R(x, t) = R2(x, t) solve (12), (10), (11) for k f = k f 2 > 0 and the same bulk concen-
tration Cb, then k f 2 > k f 1 implies j1(t) ≥ j2(t) and k f 1 > k f 2 implies j1(t) ≤ j2(t).

Proof Subtracting the equations in Eq. 12, we obtain a linear heat equation in O − R,
which can be explicitly solved to show that

O − R = 2Cberf
x√

4DOt
− Cb.

This is true for any choice of k f , so define f (x, t) := O − R as given above. Let
O1, O2, R1, and R2 satisfy the suppositions given in the lemma. Then the differential
equations can be rewritten as

∂O1

∂t
−DO

∂2 O1

∂x2 =−k f 1 O1(O1 − f ) and
∂O2

∂t
−DO

∂2 DO

∂x2 =−k f 2 O2(O2− f ).
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Subtracting equations and defining Ô := O1 − O2,

∂ Ô

∂t
− DO

∂2 Ô

∂x2 = k f 2 O2(O2 − f ) − k f 1 O1(O1 − f )

But note that the right hand side can be factored:

k f 2 O2(O2 − f ) − k f 1 O1(O1 − f ) = k f 1(O2 − O1)(O2 + O1 − f )

+(k f 2 − k f 1)O2(O2 − f )

= −k f 1 Ô(O2 + R1) + (k f 2 − k f 1)O2 R2.

Therefore

∂ Ô

∂t
− DO

∂2 Ô

∂x2 + k f 1 Ô(O2 + R1) = (k f 2 − k f 1)O2 R2.

Since O2, R1, R2 ≥ 0, we have O2 + R1 ≥ 0 and O2 R2 ≥ 0 everywhere. Then by
the maximum principle, if k f 2 − k f 1 > 0, then Ô(x, t) ≥ 0 everywhere or, equiva-
lently, O1(x, t) ≥ O2(x, t) [10]. But since O1(0, t) = O2(0, t) = 0, this implies an
inequality for the derivatives as well, as follows:

∂O1

∂x
(0, t) = lim

h→0+
O1(h, t)

h
and

∂O2

∂x
(0, t) = lim

h→0+
O2(h, t)

h
.

If both limits exist, then

∂O1

∂x
(0, t) − ∂O2

∂x
(0, t) = lim

h→0+
O1(h, t) − O2(h, t)

h
.

Since the expression inside the limit is nonnegative, the limit is as well, from which it
follows that

∂O1(0, t)

∂x
≥ ∂O2(0, t)

∂x
.

Now

∂O1

∂x

∣
∣
∣
∣
x=0

≥ ∂O2

∂x

∣
∣
∣
∣
x=0


⇒ j1(t) ≥ j2(t) 
⇒ J1(t) ≥ J2(t).

Similarly, if k f 2 − k f 1 < 0, then Ô(x, t) ≤ 0 everywhere and consequently j1(t) ≤
j2(t), which then implies J1(t) ≤ J2(t). ��
Lemma 3 Suppose that O(x, t) = O1(x, t) and R(x, t) = R1(x, t) solve Eqs. 12
and 10, 11 for k f = k f 1 and bulk concentration Cb, and that O(x, t) = O2(x, t) and
R(x, t) = R2(x, t) solve the same equations but with k f = k f 2 and bulk concentration

Cb. Then J2(t) = J1(t
k f 2
k f 1

).
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Proof Let O1, O2, R1, and R2 satisfy the above suppositions. Define ξ :=
x

√

k f 2

k f 1
, τ := t

k f 2

k f 1
, and O(x, t) := O1(ξ, τ ). Then:

∂O(x, t)

∂t
= ∂O1(ξ, τ )

∂τ

dτ

dt

=
(

DO
∂2 O1(ξ, τ )

∂ξ2 − k f 1 O1(ξ, τ )R1(ξ, τ )

)
k f 2

k f 1

= DO
∂2 O(x, t)

∂x2 − k f 2 O(x, t)R(x, t)

and similarly

∂ R

∂t
= DO

∂2 R

∂x2 − k f 2 O R.

The boundary conditions are also conserved by the transformations, since O(0, t) =
O1(0, τ ) = 0, R(0, t) = R1(0, τ ) = Cb, O(∞, t) = O1(∞, τ ) = Cb, and
R(∞, t) = R1(∞, τ ) = 0. Initial conditions are also the same, since O(x, 0) =
O1(ξ, 0) = O(x, 0) and R(x, 0) = R1(ξ, 0) = R(x, 0). Therefore O(x, t) solves
Eqs. 12, 10, 11 and therefore O2(x, t) = O(x, t) ≡ O1(ξ, τ ). Then

j2(t) = nF DO
∂O2(x, t)

∂x

∣
∣
∣
∣
x=0

= nF ADO
∂O1(ξ, τ )

∂x

∣
∣
∣
∣
x=0

= nF DO
∂O1(ξ, τ )

∂ξ

∣
∣
∣
∣
ξ=0

dξ

dx
= j1(τ )

√

k f 2

k f 1

and then

J2(t) = j2(t)
√

t = j1(τ )

√

t
k f 2

k f 1
= J1(τ ),

proving the lemma. ��
Now we can prove that J is a decreasing function.

Theorem 1 If J (t) corresponds to functions solving Eqs. 12, 10, 11 with k f = k f 1 >

0, then J (t) decreases with t .

Proof Let k f 2 > k f 1 and let Ji (t), i = 1, 2 correspond to the solution of (12),

(10), (11) with k f = k f i . Then by Lemma 3, J2(t) = J1

(

t
k f 2
k f 1

)

and by Lemma 2,

J2(t) ≤ J1(t). Therefore

J1

(

t
k f 2

k f 1

)

≤ J1(t).
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Since this is true for any k f 2 > k f 1, the above inequality can be rewritten as J1(T ) ≤
J1(t) for all T ≥ t . ��

Since O(x, t) ≥ 0 for all (x, t), it follows that J (t) ≥ 0 for all t as well.3

3.3 k f > 0 and kb > 0

Here there exists an extra factor kb P in the partial differential equations that compli-
cates the shape of J . To address this, we make the following assumption:

Assumption 1 If O1, R1, P1 solve Eqs. 9–11 for k f = k f 1 and a certain kb and
O2, R2, P2 solve Eqs. 9–11 for k f = k f 2 and the same kb, then O1(x, t) ≥ O2(x, t)
if k f 1 < k f 2 and O1(x, t) ≤ O2(x, t) if k f 1 > k f 2.

From a physical perspective, this is a legitimate assumption to make: if O2 and R2
are used up faster to make P2 than O1 and R1 are used to make P1, then we should
expect that O2 will be less than O1 for all (x, t). The consequence of this assumption
is that J1 ≥ J2 if k f 1 < k f 2 and J1 ≤ J2 if k f 1 > k f 2.

We can also adapt Lemma 3 to this case; the proof for the following lemma is nearly
identical to the proof for Lemma 3. We state only the result:

Lemma 4 If J1 corresponds to k f = k f 1 and kb = kb1 and J2 corresponds to
k f = κk f 1 and kb = κkb1 for some κ > 0, then J1(κt) = J2(t).

Although the assumption and Lemma 4 are almost direct analogues of Lemmas 2
and 3, they cannot be combined into something resembling Theorem 1, since the proof
of that theorem depended upon our ability to scale k f back to its original value after
adding or subtracting something from it, which we cannot do here: if we keep kb

constant and change k f , the new system cannot be scaled back to the system with rate
constants k f and kb, since the new rate constant ratio is different. In this case, based
on the evidence in the case k f > 0, kb = 0, as well as numerical investigations, we
assume, without proof, that the minimum exists.

The result of this section can be summarized as follows: keeping kb constant but
increasing k f will lower the minimum value of J , and by Lemma 4, keeping k f /kb

constant but varying kb (or, equivalently, k f ) will shift the minimum point of J hori-
zontally by a scale determined by the variation of kb.

4 Procedure to determine kf and kb

Suppose that we are given an experimentally determined J (t), the bulk concentration
Cb, and the diffusion coefficients DO , DR , and DP . Here we outline the algorithm to
find k f and kb:

3 We can in fact show the stronger result that lim
t→∞ J (t) = 0, under the additional assumption that if

lim
t→∞ O(x, t) exists, then its derivative is smooth. Since parabolic equations are smoothing and we are

considering bounded solutions, this is a good assumption.
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1. If for all t , the function J (t) is constant, then k f = 0 and kb cannot be determined
mathematically, since P = 0 and so kb P = 0. However, chemically speaking,
given a forward rate constant of zero, the only reasonable backward rate constant
is also zero. We therefore take k f = kb = 0 in this case.

2. If J (t) is a decreasing function, then kb = 0. To determine k f , first guess a value;
denote this by k f ′ . Numerically evaluate the current density given this rate con-
stant (e.g. using pdepe followed by pdeval in MATLAB), and denote this by
J (t). According to Lemma 3,

J (t) = J
(

t
k f

k f ′

)

Since J and J are known on a mesh of points t, k f can be determined directly
from the horizontal scaling factor k f /k f ′ ; this can be done for any number of
points on the curve.

3. If J reaches a minimum J at some finite time, then k f and kb are both positive.
To determine the rate constants, first we determine the rate constant ratio: we
make an arbitrary guess of kb and k f /kb and generate the corresponding J ; if
the minimum of this curve is greater than J , then our guess of k f /kb was too
low, and if instead the minimum is less than J, then our guess of k f /kb was too
high. Adjusting the guessed value of k f /kb appropriately, we can narrow in on
the correct value to any desired degree of accuracy.
Second, take that ratio together with any k′

b and compute the corresponding J .
Let tm be the time of the minimum of the experimentally determined J and let
t ′m be the time of the minimum of the newly generated J . Due to Lemma 4,
kb = k′

bt ′m/tm . Then since k f /kb and kb are both known, both rate constants are
known as well.

If the actual time of the minimum of J , tm , is misreported as being at a time Tm

then the corresponding rate constants satisfy
k′

f
k f

= tm
Tm

= k′
b

kb
, so the procedure is

robust with respect to horizontal translation. Vertical translation is more complicated
mathematically, but preliminary results indicate robustness in this direction as well.

To illustrate how the procedure works, suppose that we are given the chronoampero-
metric data necessary to create Fig. 5. Recall that J (t) = j (t)

√
t , and j (t) = i(t)/A,

where i(t) is the raw chronoamperometric data and A is the area of the electrode in
cm2. In all future calculations, we take our units to be as in Fig. 5.

From this plot and Cb and DO which are taken as 0.00100 mol · cm−3 and
10−5 cm2 · s−1, respectively, k f and kb can be calculated as follows:

Clearly J is not constant and is not decreasing everywhere, in contradiction to
the results of Sects. 3.1 and 3.2; by elimination it is clear that k f and kb are both
greater than zero. It is an immediate corollary of Lemma 4 that to any pair of rate
constants k f , kb, the minimum Jk f ,kb of the corresponding J depends only on k f /kb.

Furthermore, it follows from the Assumption in Sect. 3.3 that if k′
f , k′

b are another
pair of rate constants with k′

f /k′
b > k f /kb, then Jk f ,kb > Jk′

f ,k
′
b
. It is due to this that

the value of the minimum alone (here 0.1152) is sufficient to determine k f /kb. This

123



J Math Chem (2012) 50:805–818 817

Fig. 5 J (t) with
Cb = 10−3 mol · cm−3 and
DO = DR = 2DP =
10−5 cm2 · s−1. The minimum
is at (0.0052, 0.1152)

Fig. 6 Here ‘a’ does not denote any particular J (t) but rather the experimental minimum 0.1152. Curves
‘b’–‘e’ represent J (t) versus t for various values of k f /kb: ‘b’ corresponds to k f /kb = 2, 000; ‘c’ cor-
responds to k f /kb = 3, 000; ‘d’ corresponds to k f /kb = 1, 0000; ‘e’ corresponds to k f /kb = 20, 000.

Each curve was generated by kb = 500 and k f so as to make k f /kb the given value; however, as discussed
above, these particular values are unimportant at this stage of the calculations

concept is illustrated in Fig. 6; as can be seen, 3,000 < k f /kb < 10, 000. This method
can be continued to any desired degree of accuracy. In particular, here we find that
3, 906 < k f /kb < 3, 922, and so we approximate k f /kb = 3,914. By choosing each
guess based on the bisection method4, we note that the sequence of guesses converges
to the correct answer precisely at the rate of the bisection method.

Next, we guess kb = 500; by calculating the scale to which this guess is incorrect
we can approximate the actual value of kb. The J (t) corresponding to the choice of
k f /kb = 3, 914 and kb = 500 is shown as ‘b’ in Fig. 7.

As in Fig. 5, ‘a’ reaches its minimum at t = 0.0052, and it can be seen that
‘b’ reaches its minimum at t = 0.0027. As a consequence of Lemma 4, it follows
that our guess of kb = 500 was too large by a factor of 0.0052

0.0027 = 1.923. Conse-
quently we calculate kb = 500

1.923 = 260, which together with k f /kb = 3, 914 implies
k f = 1.018 × 106.

4 i.e. by taking the previous tightest bounds found and letting the new guess be their average; e.g. given
3, 000 < k f /kb < 10, 000, the next guess would be k f /kb = 6, 500.
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Fig. 7 Here ‘a’ is the curve
from Fig. 5, and ‘b’ is the J (t)
generated from k f /kb = 3, 914
and kb = 500

Had J (t) shown no minimum, we note that the computations required in Case 2
are almost identical to the final calculations above.

5 Conclusion

In summary, we have presented a semilinear reaction-diffusion system that models
the electrochemical mechanism in which an electrochemical product R consumes the
electrochemical reactant O to produce an inactive product P. We introduced a novel
method of analyzing chronoamperometric data, by defining and studying the function
J (t) = j (t)

√
t ; analytical results are proven for the model using scaling and maxi-

mum principle arguments. We then developed an iterative procedure to determine the
rate constants from chronoamperometric data.
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